IntroductiontoAcousto-OpticsTechnologyAcousto-Opticdevicesareusedinlaserequipmentforelectroniccontroloftheintensityandpositionofthelaserbeam
Introduction to Acousto-Optics Technology
Acousto-Optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. In this note, we will explain the theory and application of acousto-optic modulators.
Acousto-optic interaction occurs in all optical mediums when an acoustic wave and a laser beam are present and interact with each other. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this granting will be diffracted into several orders. With appropriate design, the first order beam has the highest efficiency. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle.
Where, λ, is the optical wavelength in air, fa, is the acoustic frequently, and , Va is the acoustic velocity, and Q, is the angle between the incident laser beam and the diffracted laser beam.
A diagram of the angular relationship between the acoustic wave and the laser beams is n in Figure 1.
The intensity of light diffracted (deflected) is proportional to the acoustic power (Pac), the material figure of merit (M2 ), geometric factors (L/H) and inversely proportional to the square of the wavelength.
With acousto-optics, both the deflection as well as the modulation of the amplitude of the optical beam are possible. Also, in the acousto-optic interaction, the laser beam frequency is shifted by an amount equal to the acoustic frequency. This frequency shift can be used for heterodyne detection applications, where precise phase information is measured.
声光技术及AOM介绍文件
https://pan..com/s/17kbsu19U0PkxoBTkjqPV1A (提取码:ji4c)
Model #AMM-100-8-70-1550 | |
波长 | 1550 nm |
基底 | Amtir |
光功率密度 | 3 W/mm2 |
中心频率 | 100 MHz |
射频带宽 | 10 MHz |
有效孔径 | 0.3 mm |
光直径 | 0.2 mm |
上升时间 | 70 ns |
数字调制带宽 | 8 MHz |
布拉格角 | 31 mrad |
分离角 | 62 mrad |
声波速度 | 2.52E+03 |
射频功率 | <1.0 W |
透光率 | >95% |
衍射效率 | ~80% |
输入阻抗 | 50 ohms |
V.S.W.R. | 2.1:1 |
光偏振态 | Random |
Model # QZF-200-100-370 | |
波长范围 | 370nm |
频移 | 200MHz |
射频带宽 | 100MHz |
有效孔径 | 0.3 mm |
光传输 | > 98 % |
衍射效率 | ~65% (at ~2.5W RF Power) |
布拉格角 | 6 mrad |
分离角 | 12 mrad |
声波速度 | 5.96 E+3 m/sec |
射频功率 | ~2.5 W |
输入阻抗 | 50ohms |
V.S.W.R | 2:1 |
光的偏振 | Linear |
射频连接器 | SMA |
Model # TEF-362-50-795 | |
波长范围 | 795nm |
频移 | 362MHz |
射频带宽 | 50MHz |
有效孔径 | 0.3 mm |
光传输 | > 98 % |
衍射效率 | 50-60% |
布拉格角 | 32 mrad |
分离角 | 64 mrad |
声波速度 | 4.2E+3 m/sec |
射频功率 | ~2 W |
输入阻抗 | 50ohms |
V.S.W.R | 2:1 |
光的偏振 | Linear (Vertical or Horizontal) |
射频连接器 | SMA |
Model # TEF-600-400-689 | |
波长范围 | 689nm |
频移 | 600MHz |
射频带宽 | 400MHz |
有效孔径 | 0.075 mm |
光传输 | > 95 % |
衍射效率 | 40~45% |
布拉格角 | 49 mrad |
分离角 | 98 mrad |
射频功率 | ~1 W |
输入阻抗 | 50ohms |
V.S.W.R | 2:1 |
光的偏振 | Linear |
射频连接器 | SMA |
Model # GPF-1000-200-780 | |
基板 | GaP |
波长范围 | 780nm |
频移 | 1000MHz |
射频带宽 | 200MHz |
有效孔径 | 0.075mm |
光传输 | >80% |
衍射效率 | ~25% |
波前畸变 | l/10 |
布拉格角 | 62mrad |
分离角 | 124mrad |
声波速度 | 6.31E+3 m/s |
射频功率 | ~1W |
输入阻抗 | 50ohms |
V.S.W.R | 3:01 |
光的偏振 | Linear (horizontal) |
射频连接器 | SMA |
Model # TEF-1500-100-795 | |
基板 | TeO2 |
波长范围 | 795nm |
频移 | 1500MHz |
射频带宽 | 100MHz |
有效孔径 | 0.075mm |
衍射效率 | 15-20% |
布拉格角 | 142mrad |
分离角 | 284mrad |
声波速度 | 4.2E+3 m/s |
射频功率 | 1.0 W |
输入阻抗 | 50ohms |
V.S.W.R | 2:1 |
光的偏振 | Linear (horizontal or vertical) |
射频连接器 | SMA |
Model # GPF-1500-200-780 | |
数据 | 780 nm |
基底 | GaP |
光功率密度 | 100 W/mm2 |
光传输 | >80% |
移频偏移 | 1500 MHz |
射频带宽 | 200 MHz |
活动直径 | 0.075 mm |
布拉格角 | 93 mrad |
夹角 | 186 mrad |
声速度(米/秒 ) | 6.31E+03 |
射频功率(瓦特) | 1 W |
衍射效率 | ~30% |
输入阻抗 | 50 ohms |
电压驻波比 | 2:01 |
光学偏振 | Linear |
类型 | Air-cooled |
Model # GPF-1700-200-795 | |
基底 | GaP |
波长范围 | 795nm |
频移 | 1700MHz |
射频带宽 | 200MHz |
有效孔径 | 0.075mm |
光传输 | >80% |
衍射效率 | ~30% |
波前畸变 | l/10 |
布拉格角 | 107mrad |
分离角 | 107mrad |
声波速度 | 6.31E+3 m/s |
射频功率 | 1W |
输入阻抗 | 50ohms |
V.S.W.R | 2.1:1 |
光的偏振 | Linear (horizontal) |
射频连接器 | SMA |
Model#GPF-3400-100-795 | |
基板 | GaP |
波长范围 | 795nm |
频移 | 3400MHz |
射频带宽 | 100MHz |
有效孔径 | 25mm |
光传输 | >80% |
衍射效率 | ~1% |
波前畸变 | l/10 |
布拉格角 | 212mrad |
分离角 | 424mrad |
声波速度 | 6.31E+3 m/s |
射频功率 | ~1W |
输入阻抗 | 50ohms |
V.S.W.R | 0.125694444 |
光的偏振 | Linear |
射频连接器 | SMA |
Model #AMM-100-8-70-1550-2FP | |
波长 | 1550 nm |
光学范围 | 130 mW (C.W) |
中心频率 | 100 MHz |
数字调制带宽 | 8 MHz |
有效孔径 | 0.3 mm |
晶体内束直径 | 0.2 mm |
上升时间 | 70 ns |
布拉格角 | 31 mrad |
分离角 | 62 mrad |
声波速度 | 2.50E+03 |
射频功率 | 1.0 W |
光传输 | >95% |
输入阻抗 | 50 ohms |
V.S.W.R. | 2.1:1 |
光偏振态 | Random (Option: Linear with PM fiber) |
Case Type | 2 Port Fiber Optically Pigtailed |
光纤类型 | 9 m core, 125 m cladding Single Mode |
光纤连接头 | FC |
抛光的光纤末端 | APC |
光纤长 | 1 m |
纤维夹套 | 900 mm OD |
背反射 | 50-60 dB |
插损 | 2.5-3.5 dB |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
*您想获取产品的资料:
个人信息: