免费注册快速求购


分享
举报 评价

LCi-SD LCi-SD 便携式光合仪

参考价面议
具体成交价以合同协议为准

该厂商其他产品

我也要出现在这里

LCi-SD 便携式光合仪是zui小巧、轻便的便携式光合作用测定仪,用以测量植物叶片的光合速率、蒸腾速率、气孔导度等与植物光合作用相关的参数。仪器应用IRGA(红外气体分析)原理,精密测量叶片表面CO2浓度及水分的变化情况来考察叶片与植物光合作用相关的参数。

详细信息 在线询价

LCi-SD 便携式光合仪

LCi-SD 便携式光合仪是zui小巧、轻便的便携式光合作用测定仪,用以测量植物叶片的光合速率、蒸腾速率、气孔导度等与植物光合作用相关的参数。仪器应用IRGA(红外气体分析)原理,精密测量叶片表面CO2浓度及水分的变化情况来考察叶片与植物光合作用相关的参数。特殊的设计可在高湿度、高尘埃环境使用。既可在研究中使用,又是很好的教学仪器。

应用领域

  • 植物光合生理研究
  • 植物抗胁迫研究
  • 碳源碳汇研究
  • 植物对气候变化的相应及其机理
  • 作物新品种筛选

 

技术特点

  • 配备手持式叶绿素荧光仪,内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序、3套光响应曲线程序、OJIP-test
  • 便携式设计,体积轻小,仅重2Kg
  • 微型IRGA置于叶室中,大大缩短CO2测量的反应时间
  • 可在恶劣环境下使用,野外工作时间长
  • 可方便互换不同种类的叶室
  • 叶室材料经精心选择,以确保CO2及水分的测量精度
  • 数据存储量大,可使用即插即拔的SD
  • 操作简单,维护方便,叶室所有区域都很容易清洁
  • 采用低能耗技术,野外单电池持续工作时间可达10小时

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

技术指标

  • 测量参数:光合速率、蒸腾速率、胞间CO2浓度、气孔导度、叶片温度、叶室温度、光合有效辐射、气压等
  • 手持叶绿素荧光仪(选配)
  1. 测量参数包括F0FtFmFm’、QY_LnQY_DnNPQQpRfdRARAreaM0SmPIABS/RC50多个叶绿素荧光参数,及3种给光程序的光响应曲线、2种荧光淬灭曲线、OJIP曲线等
  2. 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26OJIP-test测量参数包括F0FjFiFmFvVjViFm/F0Fv/F0Fv/FmM0AreaFix AreaSmSsNPhi_P0Psi_0Phi_E0Phi-D0Phi_PavPI_AbsABS/RCTR0/RCET0/RCDI0/RC
  • CO2测量范围:0-2000ppm
  • CO2测量分辨率:1ppm
  • CO2采用红外分析系统,差分开路测量系统,自动置零,自动气压和温度补偿
  • H2O测量范围:0-75 mbar
  • H2O测量分辨率:0.1mbar
  • H2O测量采用双激光调谐快速响应水蒸气传感器
  • PAR测量范围:0-3000 μmol m-2 s-1
  • 室温度:-5 - 50   精度:±0.2
  • 片温度:-5 - 50
  • 叶室中空气流量:100 500ml / min
  • 空气流量精度:全量程的±2%
  • 预热时间:205分钟
  • 数据存储:1G SD卡,可存储16,000,000组典型数据
  • 数据接口:mini-USB接口,RS232标准接口
  • 图形显示:可实时图形显示各测量参数
  • 可选配便携式光源:具有PLU控制单元,控光范围0-2300 μmol m-2 s-1
  • 可选配叶室
  1. 宽叶叶室:测量面积6.25cm2,适用于阔叶
  2. 窄叶叶室:测量面积5.2cm2,适用于条形叶
  3. 针叶叶室:适用于簇状针叶
  4. 小型叶叶室:叶室直径为16.5mm,适用于叶片直径在11mm16mm之间的叶片
  5. 小型草本植物群落测量室:测量高度低于55mm的整株草本植物光合作用
  6. 整株拟南芥测量室                                                                                                  
  7. 土壤呼吸室:体积为1L,含土壤温度传感器
  8. 果实测量室:两部分组成,上部透明、下部为体积为1L
  9. 荧光仪联用适配器:适用于连接多种叶绿素荧光仪
  • 供电系统:内置12V 2.8AH铅酸电池,可持续工作10小时左右
  • 操作环境:545
  • 主机尺寸:240×125×140mm2.4Kg
  • 主机显示参数:环境CO2和水蒸汽;CO2和水蒸汽变化;叶室和叶片的温度;气流速率;大气压;光合有效辐射;光合速率;胞间CO2浓度;蒸腾速率;气孔导度;电池状态

典型应用

Leaf life span optimizes annual biomass production rather than plant photosynthetic capacity in an evergreen shrub, Marty C. et al. 2010, New Phytologist, 187(2): 407-416

本文研究了Rhododendron ferrugineum(高山玫瑰杜鹃,杜鹃属模式种)净光合能力与叶片寿命的关系,发现有更多较老叶片的种群其光合能力更强(图中深色区域为一年叶片和二年叶片)。

产地:英国

参考文献(近三年发表200余篇SCI文章,仅列出部分代表性文献)

  1. Soil moisture overshadows temperature control over soil CO2 efflux in a Pinus canariensis forest at treeline in Tenerife, Canary Islands, Brito P. et al. 2013, Acta Oecologica, 48:1-6
  2. Physiological and biochemical characteristics of Sorghum bicolor and Sorghum sudanense subjected to salt stress in two stages of development, Oliveira VP. et al. African Journal of Agricultural Research 8(8),  660-670
  3. Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants, Miranda R S. et al. 2013, Acta Physiologiae Plantarum, 35(3), 841-852
  4. Contrasting Physiological Responses of Jatropha curcas Plants to Single and Combined Stresses of Salinity and Heat, Silva E N. et al. 2013, Journal of Plant Growth Regulation, 32(1), 159-169
  5. Daily photosynthetic radiation use efficiency for apple and pear leaves: Seasonal changes and estimation of canopy net carbon exchange rate, Auzmendi I, et al. 2013, European Journal of Agronomy, 51, 18
  6. Leaf life span optimizes annual biomass production rather than plant photosynthetic capacity in an evergreen shrub, Marty C. et al. 2010, New Phytologist, 187(2): 407-416
  7. Response of Holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere, Domínguez M.T. et al. 2011, Chemosphere, 83(8), 1166-1174
  8. Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance, Piper F.I. 2011, Annals of Forest Science, 68(2), 415-424
  9. Shrub species affect distinctively the functioning of scattered Quercus ilex trees in Mediterranean open woodlands, Forest Ecology and Management, Rolo V. et al. 2011, 261(11): 1750-1759
  10. Morphological and photosynthetic alterations in the Yellow-ipe, Tabebuia chrysotricha (Mart. Ex DC.) Standl., under nursery shading and gas exchange after being transferred to full sunlight, Endres L. et al. 2010, Agroforestry systems, 78(3): 287-298
  11. Changes in biomass and photosynthetic parameters of tomato plants exposed to trivalent and hexavalent chromium, Henriques F. S. 2010, Biologia Plantarum, 54(3): 583-586
  12. The possible role of quinate in the mode of action of glyphosate and acetolactate synthase inhibitors, Orcaray L. et al. 2010, Pest Management Science, 66(3): 262-269
  13. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants, Silva E.N. et al. 2010, Environmental and Experimental Botany, 69(3): 279-285

 


同类产品推荐


提示

×

*您想获取产品的资料:

以上可多选,勾选其他,可自行输入要求

个人信息: